To determine **Contamination Factor**; Enter a value between 0 and 1. See ISO 281 for details on how to calculate the **Contamination Factor**.

Outputs and Interpretation

With this tool, you can obtain the following outputs depending on where you selected the Timken or ISO 281:2007 method:

Timken Method Outputs

- **Catalog L10**: This is the L10 life in hours based only on bearing rating, applied loads, and speeds. Remember: L10 is the life that 90 percent of a group of apparently identical bearings is expected to meet or exceed before a fatigue spall develops.

- The **Lubrication and Low Load** life adjustment factors.

- The **Adjusted L10 Life**, which is the product of the Catalog L10 life times the life adjustment factors (lube and low load).

- **Viscosity at Operating Temp.**, which is the calculated lubricant viscosity based on the selected Lubricant and Operating Temperature chosen in the input section.

ISO 281:2007 Method Outputs

- **Adjusted Life L10a**: This is the product of the Catalog Life and the Life Adjustment Factors (lube and low load).

- **Lubricant Viscosity at Operating Temp.**, which is the calculated lubricant viscosity based on the selected Lubricant and Operating Temperature chosen in the input section.
ISO 281:2007 Method Outputs

- **Catalog L10**: This is the L10 life in hours based only on bearing rating, applied loads, and speeds. Remember: L10 is the life that 90 percent of a group of apparently identical bearings is expected to meet or exceed before a fatigue spall develops.

- **Adjusted Life L10 ISO**: this is the product of the Catalog Life and the ISO Life Modification Factor.

- **Fatigue Limit Load**: The bearing load under which the fatigue stress limit is just reached in the most heavily loaded raceway contact.

- **Kappa (=Viscosity ratio v/v1)**: This is the actual kinematic oil viscosity at operating temperature divided by the reference kinematic viscosity for adequate lubrication.

- **Viscosity at Operating Temp**, which is the calculated lubricant viscosity based on the selected Lubricant and Operating Temperature chosen in the input section.

- **ISO Life Modification Factor**: This output is calculated based on the applied Loads, Contamination Factor, calculated Fatigue Limit Load, and Kappa value. See the ISO standard for more details.

Still Need Help?

- Further information on the Timken method of calculating bearing life can be found in the [Timken Engineering Manual](#).
- Further information on the ISO 281: 2007 method of calculating bearing life can be found in the [ISO Standards](#).
- Contact your Timken sales office. Locate your local office by visiting locations.timken.com.
- Email us at TimkenEngineeringHelp@timken.com.

IMPORTANT NOTE: The accuracy of this technical information is dependent upon the validity and completeness of information supplied to Timken. Actual product performance is affected by many factors beyond the control of Timken. Therefore, the suitability and feasibility of all designs and product selection should be validated by you. For the above reasons, this information is submitted solely to provide you, a customer of Timken or its parent or affiliates, with data to assist you in your design. No warranty, expressed or implied, including any warranty of fitness for a particular purpose, is made by Timken by the submission of this information. Timken products are sold subject to Limited Warranty which is set forth in Timken’s terms and conditions of sale.

The Timken team applies their know-how to improve the reliability and performance of machinery in diverse markets worldwide. The company designs, makes and markets bearings, gear drives, automated lubrication systems, belts, brakes, clutches, chain, couplings, linear motion products and related industrial motion rebuild and repair services.